Pocket Dragon (Furry NSFW Fiction)

A short work involving anthropomorphic canid characters and a dragon. Inspired by these images (but not directly based on them).

Kinks: furries, size-difference, transformation, vore.


It was just three of us, but we partied like a frat house. At some point I’d been dared to make myself 5 inches tall instead of 5 feet tall. Yeah, I was a little short for my girls, yet alone a dragon, and that was before the dare.

Well, I say my girls, but really I was theirs. A curse had bound me to Leslie, she was the black canine of indeterminate pedigree. Big floppy ears, a wolfish muzzle, but her voice was all fox. Anise was her best friend, a fennec who had to be gagged when her mate came to visit for a night or two.

So there I was, 5 inches tall thanks to Anise, and very very slowly realizing that the alcohol content in my blood did not shrink with the rest of me. If I were any other species, I’d have been dead already, fortunately dragons are a little harder to poison.

After recovering from a fit of giggles, Leslie looked a little concerned. “You okay there-” a snort, “lil.. little guy?” I’d already passed out, still standing.

The next thing I knew, I was waking up with my snout in a small warm divot on a large silky rug of some- I looked up, seeing the hills of my Leslie’s breasts and her face looking back down at me. The divot was her belly button. I blushed, there was a faint scent of musk in there from when she made me paint her with cum, and she hadn’t washed quite enough to remove it all. I got up onto my knees.

“Hey.. C’mere draggie.” Her hand, slightly larger than me, brushed against my back. The force of it knocked me right back over, dizzying me further.

Before I could react, her hand picked me up and pushed me under the hem of her panties. I immediately noticed that she was in only her panties, and the strong scent of alcohol-fueled arousal.

“C’mon dra.. draggie. Come in.. inside.” She gasped as her clumsy movements brushed my rough exterior against her bowling ball-sized clit. An involuntary movement pushed me harder against it, and my legs and tail were enveloped by sticky, puffy labia.

It was far more pleasurable at this scale than I expected, like being caressed by velvet.. that also happened to be a little too humid. The smell got a lot stronger as I felt her open up slightly to accept more. She finished shoving me inside with a moan and I was nearly folded in half in the process.

I took a moment to rest, breathing heavily in a way that made the all-encompassing pink walls around me quiver and further moisten. Thank goodness I didn’t need air for a while, especially at this smaller size, or I could have been in serious danger.

Grasping around – more than a little unsure of where I was with my level of intoxication – I must’ve found a sensitive spot as the walls of my cave trembled and squeezed me tighter. A muffled squeal came from deep within, and the squirt of lubrication that followed tried to drown me.

I don’t remember much after that, the lack of oxygen and booze enough to make me pass out again.

Switches Suck

I don’t like switch statements, in any language. They seem unnecessarily verbose and error-prone, in fact I forgot the break statements in my example below on the first draft. Most of the time, you don’t want the fall-through feature, but you have to remember that extra word for each case to prevent that.

switch (n)
{
    case 1:
    // something useful
    break;
    case 2:
    // another useful option
    break;
    default:
    // nothing matched
}

I also really hate the indenting used in most examples (including my own), as it makes it more difficult to visually parse. I prefer to just create an object with keys based on the possible values, and access what you need directly.

-- we're gonna pretend these are useful functions dependent on a star's type..something to do with heat?
local default = {}           -- used for a unique key
local heat = {
  A = function() end,        -- pretend these are full of useful code
  B = function() end,
  G = function() end,        -- and so on
  [default] = function() end -- default which can't be accidentally chosen
}

-- make sure we don't error, and call default if needed
if heat[star.type] then
  heat[star.type]()
else
  heat[default]()
end

Better Fluid Storage

A while back, I posted a prototype fluid storage system with a mechanic for handling breaches in a pressurized system. I thought I’d be clever by storing fluids as a percentage of a defined volume and pressure. For a “simplified” system, it was quite complicated, and fundamentally flawed.

This time, it is straightforward. Keep track of the amounts of each fluid, a total sum, and volume of the container. Pressure is the sum divided by the volume, and the percent of a fluid is its amount divided by the total sum of all fluids.

tank = {
  volume: 200, sum: 300,
  contents: { hydrogen: 200, oxygen: 100 }
}
pressure = tank.sum / tank.volume -- 1.5
percent_hydrogen = tank.contents.hydrogen / tank.sum -- 0.67

Everything needed from a container can be accessed immediately or with a single calculation involving only two variables.

But what about hull breaches?

Fluids vs Mechanical Classes

I realized that I should define fluid containers very narrowly, all they need care about is a small set of numbers, and have a few functions to modify that state. Enter the Breach class.

Breach(fluidA, fluidB, volume)

Specify which fluid containers are interacting and the volume ( I guess technically it should be area) of the breach. Each update cycle moves the pressure difference multiplied by the volume (area) of the breach from the higher pressure container to the lower pressure container.

What about pumps? I have those, with a “volume” and a “rate” modifier to allow you to adjust how fast the pump works. Pumps only work in one direction, but have a function to reverse them.

Want only one fluid to go through..say, a filter? Made that as well. Valves, so that you can adjust flow rate, filter-pump combos for pushing just the right amount of one fluid, and one-way valves to allow pressure to escape but not allow any blowback.

The Flaws

  • Once pressure is equalized, contents do not mix between fluids.
  • All fluids have the same density. This probably isn’t that hard to fix, but is unneeded for my purposes.
  • All fluids mix. This may or may not be harder to fix depending on how it is approached.
  • Temperature isn’t simulated at all. I would love to have heat transfer and heat affecting density, but these details are not necessary for my current project.

The Code

As of publishing this article, I don’t have a library to give you, but I will update it as soon as I do release it. For now, here is where I have the beginnings of a library. (Updated 2024-10-11 to fix the broken link.)

Grammar-Based Generation

To me, this is a new form of procedural generation. You declare specific rules for your desired content, and then a generator runs accordingly. I’ve only seen it used for text, but I’m sure the same technique works for anything. The simplest example is picking a random item from a list, and a slightly more complex version shows the power of defining a grammar:

grammar = {
  "first name": "Anna", "Belle", "John"
  "last name": "Brown", "Jameson", "Williams"
  "full name": "{first name} {last name}"
}

G(grammar, "full name") -- ex: Anna Williams

The syntax above is pseudocode for a generator I am working on. I plan to allow the use of a custom seed along with the generator so that you can do things like have uniquely generated people for a population, where only a lookup number needs to be stored (if you wish to remember a specific person).

It gets even more powerful when you make it possible to define multiple versions of the same grammar and use different ones depending on an object’s properties, and allow inline code within the grammars. Here’s an incomplete example based on my continuing efforts to build space games:

{
  "system name": {
    {
      props: { pulsar: true }
      "PSR {random(1000)}"
    }
    {
      props: { pulsar: false }
      "{Greek letter} {Latin name}"
      "{random(100)} {Latin genitive}"
      "{modern constellation} G{random(1000,9999)}.{random(1000,9999)}"
    }
  }
}

For this example, pulsars would get their traditional “PSR ###” names, while non-pulsars would get names based on differing classification methods.

I’m currently thinking about a game based on Aurora, but massively simplified and playable in-browser. Grammar-based content generation would play a very important role in this, from generating system names (as above) to NPC ship design.

References

(Note: All resources are archived using the services linked to on Archives & Sources.) Resources that helped me recognize the potential of grammars:


(Normally I would like to publish working code along with these posts, or some other form of useful data, but today we’re looking at a work-in-progress idea without even that much concrete form.)

Simplified Fluid Storage System

(A flaw in the design of this system was fixed and posted about here.)

One of my game ideas involves constructing 2D spaceships, and the concept of a simplified system for storing fuel, oxygen, water – really any kind of fluid mixture – in storage tanks. Along with this, it allows simulating breaches between containers, hard vacuum, and the pressurized areas of the ship itself!

{ -- a rough approximation of Earth's atmosphere
  pressure: 1
  volume: 4.2e12 -- 4.2 billion km^3
  contents: {
    nitrogen: 0.775
    oxygen: 0.21
    argon: 0.01
    co2: 0.005
  }
}

{ -- hard vacuum
  pressure: 0
  volume: math.huge -- infinity
  -- the contents table will end up containing negative infinity of anything that leaks into the vacuum
}

It all comes down to storing a total pressure and volume per container, and a table of contents as percentages of the total mixture. The total amount of mass in the system can be easily calculated (volume * pressure), as can the amount of any item in the system ( volume * pressure * percent).

Breaches are stored as a reference in the container with a higher pressure, and a size value is added to the container with lower pressure (representing the size of the hole between them).

screenshot of testing my fluid system
A sequence of tests.

Limitations

  • Everything has the same density and mixes evenly.
  • There are no states of matter, everything is treated as a gas.
  • Attempting to directly modify the amount of a fluid is prone to floating-point errors it seems, while mixing containers via the breach mechanic is working as expected.

The code was written in MoonScript / Lua and is available here.


Updated 2024-10-11 to fix broken link.